Glial cell-line derived neurotrophic factor is essential for electroconvulsive shock-induced neuroprotection in an animal model of Parkinson's disease.
نویسندگان
چکیده
Sustained motor improvement in human patients with idiopathic Parkinson's disease has been described following electroconvulsive shock (ECS) treatment. In rats, ECS stimulates the expression of various trophic factors (TFs), some of which have been proposed to exert neuroprotective actions. We previously reported that ECS protects the integrity of the rat nigrostriatal dopaminergic system against 6-hydroxydopamine (6-OHDA)-induced toxicity; in order to shed light into its neuroprotective mechanism, we studied glial cell-line derived neurotrophic factor (GDNF) levels (the most efficient TF for dopaminergic neurons) in the substantia nigra (SN) and striatum of 6-OHDA-injected animals with or without ECS treatment. 6-OHDA injection decreased GDNF levels in the SN control animals, but not in those receiving chronic ECS, suggesting that changes in GDNF expression may participate in the ECS neuroprotective mechanism. To evaluate this possibility, we inhibit GDNF by infusion of GDNF function blocking antibodies in the SN of 6-OHDA-injected animals treated with ECS (or sham ECS). Animals were sacrificed 7 days after 6-OHDA infusion, and the integrity of the nigrostriatal system was studied by tyrosine hydroxylase immunohistochemistry and Cresyl Violet staining. Neuroprotection observed in ECS-treated animals was inhibited by GDNF antibodies in the SN. These results robustly demonstrate that GDNF is essential for the ECS neuroprotective effect observed in 6-OHDA-injected animals.
منابع مشابه
Neuroprotection and restoration of the nigrostriatal dopaminergic system in 6-OHDA lesioned rat model of Parkinson's disease: Role of GDNF and TGF expressing Zuckerkandl's organ
Zuckerkandl’s organ (ZK) is an extra adrenal para-ganglion and has the ability to express glial cell line derived neurotrophic factor (GDNF) and transforming growth factor (TGF). It is also a source of dopamine and norepinephrine. In the present study, the neuroprotective and restorative potential of ZK was studied by transplanting it into the striatum of adult rats either before or after the i...
متن کاملNeuroprotection and restoration of the nigrostriatal dopaminergic system in 6-OHDA lesioned rat model of Parkinson's disease: Role of GDNF and TGF expressing Zuckerkandl's organ
Zuckerkandl’s organ (ZK) is an extra adrenal para-ganglion and has the ability to express glial cell line derived neurotrophic factor (GDNF) and transforming growth factor (TGF). It is also a source of dopamine and norepinephrine. In the present study, the neuroprotective and restorative potential of ZK was studied by transplanting it into the striatum of adult rats either before or after the i...
متن کاملGDNF fails to exert neuroprotection in a rat α-synuclein model of Parkinson's disease.
The neuroprotective effect of the glial cell line-derived neurotrophic factor has been extensively studied in various toxic models of Parkinson's disease. However, it remains unclear whether this neurotrophic factor can protect against the toxicity induced by the aggregation-prone protein α-synuclein. Targeted overexpression of human wild-type α-synuclein in the nigrostriatal system, using aden...
متن کاملLong-term neuroprotection and neurorestoration by glial cell-derived neurotrophic factor microspheres for the treatment of Parkinson's disease.
BACKGROUND Glial cell-derived neurotrophic factor is a survival factor for dopaminergic neurons and a promising candidate for the treatment of Parkinson's disease. However, the delivery issue of the protein to the brain still remains unsolved. Our aim was to investigate the effect of long-term delivery of encapsulated glial cell-derived neurotrophic factor within microspheres. METHODS A singl...
متن کاملThe Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells
Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 195 شماره
صفحات -
تاریخ انتشار 2011